Share:
Notifications
Clear all

[Solved] Trigonometry question

1 Posts
1 Users
0 Reactions
205 Views
0
Topic starter

1623761996-kN9v82iGRZmxJOqto5qKvIihZDMzqnjV-soru-29.jpg

1 Answer
0
Topic starter

(1)  

Proof: Since   \small 2f(-sinx)+3f(sinx)=4sinxcosx     (I), 

 substitute \small -sinx   into (I)  to obtain \small 2f(sinx)+3f(-sinx)=-4sinxcosx     (II)

\small (I)+(II)\Rightarrow 5f(sinx)+5f(-sinx)=0\Rightarrow f(sinx)=-f(-sinx),   therefore  \small f(x)  is an odd function.

(2)

Solution: \small (I)-(II)\Rightarrow f(sinx)-f(-sinx)=8sinxcosx. 

Since \small f(sinx)=-f(-sinx)\Rightarrow 2f(sinx)=8sinxcosx,  then  \small f(sinx)=4sinx\sqrt{1-sin^2x}, (-1\leq x\leq 1).

Therefore, \small f(x)=4x\sqrt{1-x^2}, (-1\leq x\leq 1).

Share: