Share:
Notifications
Clear all

[Solved] Trigonometric equations

1 Posts
1 Users
0 Reactions
358 Views
0
Topic starter

1623762545-VBJdgXp8LsLde2coribCuFZyDAQR2Cbc-soru-37.jpg

1 Answer
0
Topic starter

Let      \small \frac{sin\alpha -cos\alpha }{sin\alpha +cos\alpha }=k\Rightarrow (1-k)sin\alpha =(1+k)cos\alpha        (1)

Denote \small sin\alpha =2-3cos\alpha         (2)

Applying (2) / (1), we have \small cos\alpha =\frac{1-k}{2-k}.

Substituting it into (1), we have  \small sin\alpha =\frac{1+k}{2-k} (k\neq 2).

Since \small sin^2\alpha +cos^2\alpha =1,  then 

\small (\frac{1+k}{2-k})^2+(\frac{1-k}{2-k})^2=1.   

It can be written as \small k^2+4k-2=0.

Solving the equation, we have \small k=-2\pm \sqrt{6}.

As a conclusion,  \small \frac{sin\alpha -cos\alpha }{sin\alpha +cos\alpha }=-2\pm \sqrt{6}.

Share: