Share:
Notifications
Clear all

[Solved] Triangle area trigonometry

1 Posts
1 Users
0 Reactions
248 Views
0
Topic starter

1623763220-9TkJDz01MJK1uLUsl3KZWkKY5oxWzOqo-img_8253.jpg

1 Answer
0
Topic starter

Since  \small sinA+cosA=\sqrt{2}cos(A-45^{\circ})=\frac{\sqrt{2}}{2}\Rightarrow cos(A-45^{\circ})=\frac{1}{2}.

Additionally, \small 0< A< 180^{\circ},  then  \small A-45^{\circ}=60^{\circ}\Rightarrow A=105^{\circ}

\small \Rightarrow tanA=tan(45^{\circ}+60^{\circ})=\frac{1+\sqrt{3}}{1-\sqrt{3}}=-2-\sqrt{3}.

Since   \small sinA=sin(45^{\circ}+60^{\circ})=sin45^{\circ}cos60^{\circ}+cos45^{\circ}sin60^{\circ}=\frac{\sqrt{2}+\sqrt{6}}{4},

we have    \small S(\angle ABC)=\frac{1}{2}.AC.AB.sinA=\frac{1}{2}.2.3.\frac{\sqrt{2}+\sqrt{6}}{4}=\frac{3}{4}(\sqrt{2}+\sqrt{6}).

Share: