Share:
Notifications
Clear all

[Solved] Range of the trigonometric function

1 Posts
1 Users
0 Reactions
400 Views
0
Topic starter

1623762714-lqvNS2BZzNsQHxtAw6Lpvi8gcZ7ESnXN-img_8247.jpg

1 Answer
0
Topic starter

According to the domain of square root, we can obtain \small 0\leq x^2+x+1\leq1.   

Since \small x^2+x+1\leq 1,  then \small -1\leq x\leq 0.  Hence, the domain of the function is \small [-1,0].

Since \small x^2+x+1=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\Rightarrow \frac{3}{4}\leq x^2+x+1\leq 1

\small \Rightarrow 0\leq arccos(x^2+x+1)\leq arccos\frac{3}{4}\Rightarrow 0\leq \sqrt{arccos(x^2+x+1)}\leq \sqrt{arccos\frac{3}{4}}.

Therefore, the range of the function is \small [0, \sqrt{arccos\frac{3}{4}}].

Share: