Share:
Notifications
Clear all

[Solved] Prove the trigonometric problem

1 Posts
1 Users
0 Reactions
257 Views
0
Topic starter

1623754043-n08C2oTPJ4ObcxZv2aYbHjAJ7S34UwK7-soru-35.jpg

1 Answer
0
Topic starter

Proof: Applying the equal radio theorem, we have     \small \frac{b}{cos2\alpha }=\frac{a+c}{cos\alpha +3cos\alpha }\neq 0,

Since  \small cos\alpha \neq 0,     

\small cos2\alpha \neq 0\Rightarrow \frac{b}{cos2\alpha }=\frac{a+c}{2cos\alpha cos2\alpha }\neq 0.

In particular, \small b\neq 0, cos\alpha =\frac{a+c}{2b}.

Therefore  \small sin^2\frac{\alpha }{2}=\frac{1-cos\alpha }{2}=\frac{1}{2}(1-\frac{a+c}{2b})=\frac{2b-a-c}{4b}.

Share: