Share:
Notifications
Clear all

[Solved] Logarithm trigonometry

1 Posts
1 Users
0 Reactions
317 Views
0
Topic starter

1623762377-6WQPn9MrlU5b17HWzzALdZLdQPrDFFSn-soru-39.jpg

1 Answer
0
Topic starter

Changing the base number of the given equation, we have 

\small \frac{lgcos\Theta }{lgsin\Theta -lgcos\Theta }=\frac{2}{3}\Rightarrow \frac{lgcos\Theta }{lgsin\Theta }=\frac{2}{5}\Rightarrow log_{sin\Theta }cos\Theta =\frac{2}{5}.

Hence,  

\small log_{csc^2\Theta }(\frac{sin2\Theta }{2})=-log_{sin^2\Theta }(sin\Theta cos\Theta )

\small =-log_{sin\Theta }(sin\Theta cos\Theta )^\frac{1}{2}=-\frac{1}{2}log_{sin\Theta }(sin\Theta cos\Theta )=-\frac{1+log_{sin\Theta }cos\Theta }{2}=-\frac{1+\frac{2}{5}}{2}=-\frac{7}{10}.

Share: