Share:
Notifications
Clear all

[Solved] Geometric sequence trigonometry

1 Posts
1 Users
0 Reactions
520 Views
0
Topic starter

1623762471-PDaZuUNyvuguIPvFUt09M9Xr9ZnTxwtX-soru-38.jpg

1 Answer
0
Topic starter

(1)  

\small cosB=\frac{3}{4}\Rightarrow 0< B< \frac{\Pi }{2}\Rightarrow sinB=\sqrt{1-(\frac{3}{4})^2}=\frac{\sqrt{7}}{4}.

Since a,b,c form a geometric sequence, applying the sine theorem, we have \small sin^2B=sinA.sinC.

Therefore

\small cotA+cotC=\frac{cosA}{sinA}+\frac{cosC}{sinC}=\frac{sin(A+C)}{sinAsinC}=\frac{sinB}{sin^2B}=\frac{1}{sinB}=\frac{4\sqrt{7}}{7}

(2)

\small \overrightarrow{BA}\overrightarrow{BC}=\frac{3}{2}\Rightarrow cacosB=\frac{3}{2}.  Additionally \small cosB=\frac{3}{4},    thus  \small ca=2.

Since \small b^2=ac=2,  applying the cosine theorem  \small b^2=a^2+c^2-2accosB,   we have

\small a^2+c^2=b^2+2accosB=5\Rightarrow (a+c)^2=a^2+c^2+2ac=5+4=9.  Therefore, \small a+c=3.

Share: