Share:
Notifications
Clear all

[Solved] Domain and range of the trigonometric function

1 Posts
1 Users
0 Reactions
601 Views
0
Topic starter

1623762101-EzuGn1orWbk1BUbZoOyXpdUwO3bCfHmI-soru-27.jpg

1 Answer
0
Topic starter

The function is defined if and only if   \small 2cosx-1\geq 0,  that is   \small cosx\geq \frac{1}{2}.  Thus the domain of y is   \small 2n\Pi -\frac{\Pi }{3}\leq x\leq 2n\Pi +\frac{\Pi }{3} (n\epsilon \mathbb{Z}).

Since \small 0\leq \sqrt{2cosx-1}\leq 1,  then  \small 0\leq arctan\sqrt{2cosx-1}\leq \frac{\Pi }{4},   thus  \small \frac{\Pi }{8}\leq y\leq \frac{\Pi }{4}.

Therefore, the domain of the function is \small x\epsilon [2n\Pi -\frac{\Pi }{3},2n\Pi +\frac{\Pi }{3}] (n\epsilon \mathbb{Z}),   and the range is  \small y\epsilon [\frac{\Pi }{8},\frac{\Pi }{4}].

Share: