Share:
Notifications
Clear all

[Solved] Trigonometry triangles

1 Posts
1 Users
0 Reactions
483 Views
0
Topic starter

1623767337-pZ3Ty3HGgrWyMkOfGzy1MyBFhg9lVovF-soru-41-1.jpg

1 Answer
0
Topic starter

Since a,b,c form a geometric sequence, then \small b^2=ac.  Applying the sine theorem, we have \small sin^2B=sinAsinC.  Then 

\small 1-cos(A-C)\Rightarrow 2cos^2B+cosB-1\geq 0\Rightarrow cosB\geq \frac{1}{2}, 

or    \small cosB\leq -1  (truncated).

Hence \small 0<B\leq \frac{\Pi }{3}.

Additionally since   \small sinB+cosB=\sqrt{2}sin(B+\frac{\Pi }{4})\Rightarrow 1\leq m^2\leq \sqrt{2}  

\small \Rightarrow -\sqrt[4]{2}\leq m\leq -1,   or  \small 1\leq m\leq \sqrt[4]{2}.

Share: