Share:
Notifications
Clear all

[Solved] Roots

1 Posts
1 Users
0 Reactions
555 Views
0
Topic starter

Given a=\sqrt[3]{4} +\sqrt[3]{2}+1,   find the value of  \tfrac{3}{a}+\tfrac{3}{a^2}+\tfrac{1}{a^3}.

 

1 Answer
0
Topic starter

(\sqrt[3]{2}-1)a=(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)=2-1=1

\Rightarrow \tfrac{1}{a}=\sqrt[3]{2}-1,   

thus   \tfrac{3}{a}+\tfrac{3}{a^2}+\tfrac{1}{a^3}=\tfrac{3a^2+3a+1}{a^3}

=\tfrac{a^3+3a^2+3a+1-a^3}{a^3}

(\tfrac{a+1}{a})^3-1=(1+\tfrac{1}{a})^3-1=2-1=1.

Share: