Share:
Notifications
Clear all

[Solved] Functions equations

1 Posts
1 Users
0 Reactions
269 Views
0
Topic starter

If the equation   (2-2^{-|x-3|})^2=3+a  with respect to x has real roots, find the range of real number a.

 

1 Answer
0
Topic starter

We simply the given equation to get   \small a=(2-2^{-|x-3|})^2-3.

Let \small t=2^{-|x-3|},  then  \small 0<t\leq 1,   \small a=f(t)=(t-2)^2-3.

Since  \small a=f(t) is decreasing on \small (0,1],  then \small f(1)\leq f(t)<f(0).

This means \small -2\leq f(t)<1.  Thus the range of real number \small a is \small a\in [-2,1).

Share: