Share:
Notifications
Clear all

[Solved] Inequality

1 Posts
1 Users
0 Reactions
354 Views
0
Topic starter

The inequality \sqrt{x}>ax+\frac{3}{2}  has the solution set \left \{ x|4<x<b \right \},  find the values of a and b.

1 Answer
0
Topic starter

\small \sqrt{x}>ax+\frac{3}{2}\Leftrightarrow a(\sqrt{x})^2-\sqrt{x}+\frac{3}{2}<0.\small 2+\sqrt{b}=\frac{1}{a} 

The solution set  \small \left \{ x|4<x<b \right \} is equivalent to \small \left \{ x|2<\sqrt{x}<\sqrt{b} \right \}.  

Vieta's formulas imply

\small 2+\sqrt{b}=\frac{1}{a}

\small 2\sqrt{b}=\frac{3}{2a}

\small a>0

\small \Rightarrow a=\frac{1}{8}, b=36.

Share: