Share:
Notifications
Clear all

[Solved] Integral question

1 Posts
1 Users
0 Reactions
243 Views
0
Topic starter

Find the value of   \int_{1}^{2}\frac{x^4-2x^2+3x-2}{x^2-6x+9}dx.

1 Answer
0
Topic starter

First we note that \small x^2-6x+9=(x-3)^2,  and so we write 

\small x^4-2x^2+3x-2=x^3(x-3)+3x^2(x-3)+7x(x-3)+24(x-3)+70

\small =(x-3)[x^2(x-2)+6x(x-3)+25(x-3)+99]+70

the integral therefore becomes

\small \int_{1}^{2}\left \{ x^2+6x+25+\frac{99}{x-3}+\frac{70}{(x-3)^2} \right \}dx

\small =[\frac{1}{3}x^3+3x^2+25x+99ln|x-3|-\frac{70}{(x-3)}]_{1}^{2}

\small =\frac{8}{3}+12+50+70+99ln1-(\frac{1}{3}+3+25+99ln2+353)=\frac{214}{3}-99ln2.

Share: