Share:
Notifications
Clear all

[Solved] Math problem needs to prove

1 Posts
1 Users
0 Reactions
343 Views
0
Topic starter

Given a^2+b^2+c^2=1  show -\frac{1}{2}\leq ab+bc+ca\leq 1.

 

1 Answer
0
Topic starter

\small a^2+b^2\geq 2ab,

\small b^2+c^2\geq 2bc,

\small c^2+a^2\geq 2ca,

add  them up to obtain

\small ab+bc+ca\geq a^2+b^2+c^2=1.

Since \small a^2+b^2+c^2+2(ab+bc+ca)\geq 0,  then 

\small ab+bc+ca\geq -\frac{1}{2}(a^2+b^2+c^2)=-\frac{1}{2},  thus   \small -\frac{1}{2}\leq ab+bc+ca\leq 1.

Share: