Share:
Notifications
Clear all

[Solved] Logarithm and inequality

1 Posts
1 Users
0 Reactions
630 Views
0
Topic starter

Solve the inequality    lg(x^2-x-6)<lg(2-3x).

 

1 Answer
0
Topic starter

The inequality holds if and only if 

\small x^2-x-6>0

\small 2-3x>0

\small x^2-x-6<2-3x

\small \Rightarrow

\small x<-2  or  \small x>3

\small x<\frac{2}{3}

\small -4<x<2

\small \Rightarrow -4<x<2,  which is the solution of the original inequality.

Share: