Share:
Notifications
Clear all

[Solved] Inequality question

1 Posts
1 Users
0 Reactions
701 Views
0
Topic starter

a,b are real numbers and a^3+b^3=2,  show  a+b\leq 2.

 

1 Answer
0
Topic starter

Suppose \small a+b>2,  then   \small b>2-a\Rightarrow b^3>(2-a)^3=8-12a+6a^2-a^3

\small \Rightarrow a^3+b^3>8-12a+6a^2=6a^2-12a+6+2=6(a-1)^2+2>2,

a contradiction to \small a^3+b^3=2.   Hence \small a+b\leq 2.

Share: