Share:
Notifications
Clear all

[Solved] Fractions and inequalities

1 Posts
1 Users
0 Reactions
427 Views
0
Topic starter

Given x>0, y>0,    \frac{1}{x}+\frac{9}{y}=1,    show  x+y\geq 12.

1 Answer
0
Topic starter

Since \small x>0, y>0,  we have \small \frac{1}{x}+\frac{9}{y}\geq 2\sqrt{\frac{1}{x}*\frac{9}{y}}=\frac{6}{\sqrt{xy}}.

Since \small \frac{1}{x}+\frac{9}{y}=1,  we have \small \frac{6}{\sqrt{xy}}\leq 1,   which is equivalent to \small \sqrt{xy}\geq 6.

\small x+y\geq 2\sqrt{xy}\geq 12.

Share: