Share:
Notifications
Clear all

[Solved] Fraction question

1 Posts
1 Users
0 Reactions
287 Views
0
Topic starter

x,y are positive real numbers and   \frac{1}{x}-\frac{1}{y}-\frac{1}{x+y}=0,  what is the value of  (\frac{y}{x})^3+(\frac{x}{y})^3?

1 Answer
0
Topic starter

\small \frac{1}{x}-\frac{1}{y}-\frac{1}{x+y}=0\Rightarrow \frac{y-x}{xy}=\frac{1}{x+y}\Rightarrow \frac{y}{x}-\frac{x}{y}=1,   thus

\small \frac{y}{x}+\frac{x}{y}=\sqrt{(\frac{y}{x}-\frac{x}{y})^2+4\frac{y}{x}\frac{x}{y}}=\sqrt{5}      Therefore

\small (\frac{y}{x})^3+(\frac{x}{y})^3=(\frac{y}{x}+\frac{x}{y})(\frac{y^2}{x^2}-\frac{y}{x}\frac{x}{y}+\frac{x^2}{y^2})

\small =(\frac{y}{x}+\frac{x}{y})[(\frac{y}{x}+\frac{x}{y})^2-3\frac{y}{x}\frac{x}{y}]=\sqrt{5}(5-3)=2\sqrt{5}.

Share: