Share:
Notifications
Clear all

[Solved] Sequences

1 Posts
1 Users
0 Reactions
316 Views
0
Topic starter

If sequence \left \{ a_{n} \right \}  satisfies a_{1}=3,   and a_{n+1}=2a_{n}+1(n\epsilon \mathbb{N}).  Find the general term of the sequence.

 

1 Answer
0
Topic starter

Adding 1 to both sides of the equation \small a_{n+1}=2a_{n}+1  to obtain \small a_{n+1}+1=2(a_{n}+1).  We apply the recurrent relation to obtain \small a_{n+1}+1=2(a_{n}+1),     \small a_{n-1}+1=2(a_{n-2}+1),........., a_{2}+1=2(a_{1}+1). 

Multiplying the above equations and applying \small a_{1}=3  to generate \small a_{n}=2^{n+1}-1 (n\epsilon \mathbb{N}).

Share: