Proving the functio...
 
Share:
Notifications
Clear all

[Solved] Proving the function

1 Posts
1 Users
0 Reactions
392 Views
0
Topic starter

If for all x,y \in \mathbb{R},    f(x+y)=f(x)+f(y)  holds. Show f(x) is an odd function.

 

1 Answer
0
Topic starter

Obviously, the domain of f(x)  is R.

Let \small y=-x  where \small f(x+y)=f(x)+f(y),  then \small f(0)=f(x)+f(-x).

Let x = y = 0 where \small f(0)=f(0)+f(0),  then \small f(0)=0.

Thus \small f(x)+f(-x)=0  which means \small f(x)=-f(-x).  Hence f(x) is an odd function.

Share: