Geometric sequence ...
 
Share:
Notifications
Clear all

[Solved] Geometric sequence arithmetic sequence fractions

1 Posts
1 Users
0 Reactions
645 Views
0
Topic starter

x, y, z  are real numbers, 3x, 4y, 5z  follow a geometric sequence, and  \tfrac{1}{x}, \tfrac{1}{y}, \tfrac{1}{z}   follow an arithmetic sequence, find the value of \tfrac{x}{z}+\tfrac{z}{x} 

1 Answer
0
Topic starter

\large (4y)^2=15xz   (i)

\large \frac{2}{y}=\frac{1}{x}+\frac{1}{z}    (ii)

(ii)     \large \Rightarrow y= \frac{2xz}{x+z}

substitute it into (i):

\large 16(\tfrac{2xz}{x+z})^2=15xz\Rightarrow \tfrac{(x+z)^2}{xz}=\tfrac{64}{15}

\large \Rightarrow\frac{x}{z}+2+\frac{z}{x}=\frac{64}{15}\Rightarrow \frac{x}{z}+\frac{z}{x}=\frac{34}{15}

Share: