Finding the solutio...
 
Share:
Notifications
Clear all

[Solved] Finding the solution of exponential funtion

1 Posts
1 Users
0 Reactions
323 Views
0
Topic starter

Let f(x)=\frac{4^x}{4^x+2},   compute   f(\frac{1}{1001})+f(\frac{2}{1001})+...+f(\frac{1000}{1001}).

 

1 Answer
0
Topic starter

Since  \small f(1-x)=\frac{4^{1-x}}{4^{1-x}+2}=\frac{4}{4+2*4^x}=\frac{2}{4^x+2},  then  

\small f(x)+f(1-x)=\frac{4^x}{4^x+2}+\frac{2}{4^x+2}=1

Thus 

\small f(\frac{1}{1001})+f(\frac{2}{1001})+...+f(\frac{1000}{1001})=f(\frac{1}{1001})+f(\frac{1000}{1001})+f(\frac{2}{1001})+f(\frac{999}{1001})+...+f(\frac{500}{1001})+f(\frac{501}{1001})

\small =1+1+1+....+1 (500 times)=500.

Share: