Share:
Notifications
Clear all

[Solved] Complex number

1 Posts
1 Users
0 Reactions
326 Views
0
Topic starter

Let z\in \mathbb{C} / \left \{ 0 \right \}.  Prove that Re\left \{ \frac{1}{z} \right \}> 0,  if and only if   Re\left \{ z \right \}> 0.

 

1 Answer
0
Topic starter

\small \frac{1}{z}=\frac{\bar{z}}{z.\bar{z}}=\frac{x-iy}{x^2+y^2}=\frac{x}{x^2+y^2}-i\frac{y}{x^2+y^2}

hence 

\small Re\left \{ \frac{1}{z} \right \}=\frac{z}{x^2+y^2}>0,     if and only if \small x=Re\left \{ z \right \}>0.

Share: