Share:
Notifications
Clear all

[Solved] Absolute Value

1 Posts
1 Users
0 Reactions
485 Views
0
Topic starter

|x+4|+|3-x|=10-|y-2|-|1+y|, find the maximum and minimum values of   xy.

1 Answer
0
Topic starter

|x+4|+|3-x|=10-|y-2|-|1+y|\Rightarrow |x+4|+|3-x|+|y-2|+|1+y|=10

Since  |x+4|+|3-x|\geqslant 7  and  |y-2|+|1+y|\geqslant 3.   |x+4|+|3-x|+|y-2|+|1+y|=10  only if we choose equal sign in both inequalities. 

|x+4|+|3-x|\geqslant 7 \Rightarrow -4\leqslant x\leqslant 3

|y-2|+|1+y|\geqslant 3\Rightarrow -1\leqslant y\leqslant 2.

Hence  xy  has the maximum value 6 and minimum value -8.

Share: