Share:
Notifications
Clear all

[Solved] Real numbers question

1 Posts
1 Users
0 Reactions
279 Views
0
Topic starter

Real numbers a, b, c satisfy  a+b+c=0,    abc=2,   show that at least one of a,b, c is not less than 2.

1 Answer
0
Topic starter

Obviously at least one of a, b, c is positive. Without loss of generality, let \small a>0,  then   \small b+c=-a,    \small bc=\frac{2}{a},   that is b, c are the two roots of the quadratic equation \small x^2+ax+\frac{2}{a}=0.   Consider the discriminant    \small \Delta \geq 0\Rightarrow a^2-\frac{8}{a}\geq 0\Rightarrow a^3\geq 8\Rightarrow a\geq 2.

Share: